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ABSTRACT

A diffeological space is a set equipped with a smooth structure, known as a diffeology,

which allows us to extend certain notions from manifolds to these more general spaces. We study

a generalized notion of tangent space to a point of a manifold, namely the internal tangent space

to a point of a diffeological space. In particular, we study these internal tangent spaces when the

diffeological space in question is the orbit space of a manifold acted upon by a proper Lie group

action. We provide a useful description for an arbitrary internal tangent space to a point of such

an orbit space and then, in the culmination of our work, show that the internal tangent space to

a point of an orbit space, viewed as a diffeological space, is isomorphic to the stratified tangent

space to the same point, when the orbit space is viewed as a stratified space with the well-known

orbit type stratification.
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CHAPTER I

INTRODUCTION

A diffeological space is a set equipped with a smooth structure, known as a diffeology (see

Definition II.1), which usefully generalizes certain notions of traditional smooth structure on a

manifold. All manifolds are diffeological spaces, with a standard and well-understood diffeology,

but there are many important diffeological spaces which are not manifolds, including the orbit

spaces of manifolds acted upon by Lie group actions (when the action is not free) as well as more

exotic but still important examples such as the irrational torus (see [17], exercise 31, p. 31).

In this paper, we focus on one notion which can be generalized from manifolds to spaces

with a diffeological smooth structure: that of the tangent space to a point. On diffeological spaces,

there are several notions of tangent space which extend the usual concept. In this work, we employ

the notion of internal tangent space to a point, a (possibly infinite-dimensional) vector space first

introduced by Hector in [14] and subsequently expanded in the works [15] and [20]. However, we

will draw our exposition from [8], which corrects and expands upon the earlier work. The internal

tangent space to a point is given, in our work, in Definition II.11.

There are many expanded notions of smooth structure which apply even when the space

in question is not a manifold (see [32] for an exposition of some of them). The idea of diffeology

first formally appeared in the works of Souriau, including [30] and [31], and relates to earlier work

by Chen, especially [5] and [6]. The primary reference for diffeology is [17].

In this paper, we restrict our attention to the orbit spaces of manifolds which are acted

upon by proper Lie group actions. That is, we study the structure of the internal tangent space

to a point of such an orbit space. These spaces are diffeological spaces with a well-understood

quotient diffeology, which arises from the standard diffeology on the associated manifold.

The structure of this paper is as follows. In chapter II, we carefully present the necessary

background material on diffeological spaces and the internal tangent space to a point of a diffeo-

logical space, and present examples where we determine the internal tangent spaces of several or-

7
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bit spaces explicitly. The results from this chapter are drawn from [8], but the examples–although

well-known–are presented in detail here.

After this, in chapter III we present the necessary theory of Lie groups and proper Lie

group actions which we will employ in the remainder of the work, as well as fixing the necessary

notation. This material is drawn primarily from [12] and the results are well-known (although

Proposition III.9 is usually not laid out explicitly).

Chapter IV shows that the internal tangent space to an arbitrary point of the orbit space of

a manifold under a proper Lie group action is isomorphic to another internal tangent space with

more structure. The primary results, Theorem IV.4 and Corollary IV.5, are known to specialists in

the field, but to the author’s knowledge they have not yet been written down in full anywhere in

the literature. We also present in detail the example of R3 acted upon by the rotation group SO(3)

to show the utility of our findings.

In chapter V, the culmination of our work, we show that the internal tangent space to a

point of an orbit space acted upon by a proper Lie group action, with the orbit space viewed

as a diffeological space, is isomorphic to the stratified tangent space to the same point in the

orbit space, with the orbit space now viewed as a stratified space. Stratified spaces are, roughly

speaking, spaces which can be partitioned into “pieces” called strata, each of which is a manifold

(hence each point has a natural associated tangent space). After briefly introducing these spaces

and the natural “orbit-type stratification” possessed by all orbit spaces of manifolds acted upon

by proper Lie group actions, detailed in [12] and [24], we turn to our findings. The culminating

result is Theorem V.6, which itself is due primarily to Lemmas V.8 and V.11 and a function, which

we call the average map, presented in [12] and described here in Proposition V.7. Theorem V.6

is novel to our work in its entirety. We close with a reprise of our earlier examples of internal

tangent spaces, now considering the stratified tangent space associated to the same point of the

given orbit space.
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The results given here, especially the culminating Theorem V.6, are significant because

they give a greater understanding of the internal tangent space to a point in the context of the

orbit spaces we are studying. In addition to the practical tool for determining the internal tangent

spaces of certain orbit spaces more easily provided by Corollary IV.5, this work may have a

place in studies of diffeological analogues of other manifold notions which depend on the notion

of internal tangent space, at least when the spaces studied are our relevant orbit spaces (which

include, for instance, orbifolds). As examples, consider the works of [19] and especially [1] on

immersions in the diffeological sense.

Further, our work can help shed light on the internal tangent bundle, analogous to the

conventional manifold tangent bundle, which can be formed from the internal tangent spaces to

each point of a diffeological space. It is studied in [8] and [9]. The internal tangent bundle itself is

an example of what is termed a diffeological vector pseudo-bundle, and so enhanced knowledge

of the internal tangent bundle can expand our collective understanding of these spaces as well

(which are studied in, specifically, [8], [9], [10], [35], and [23]).

Lastly, we again highlight the importance of Theorem V.6. Its utility is in linking the

newer concept of internal tangent space to a point to the well-understood notion of stratified

tangent space to a point. In particular, the orbit spaces we study admit a well-known orbit-type

stratification. Further, the stratified tangent spaces associated to a stratified space can form a

stratified tangent bundle, which is also well-understood in the context of orbit-type stratified orbit

spaces. Our result linking the internal and stratified tangent spaces to a point may therefore also

be useful in linking the internal tangent bundle associated to an orbit space to its stratified tangent

bundle, although care is required as traditionally an alternative smooth structure, known as a

Sikorski smooth structure (first introduced in [27] and [28]), is placed on stratified spaces and

their associated tangent bundles.

Exposition on the orbit-type stratification of the orbit space associated to a manifold acted

upon by a proper Lie group action, as well as the resulting Sikorski smooth structure which can
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be assigned, can be found in [24], and further relevant references include [29], [11], [16], [4],

and [26]. While beyond the scope of this work, we believe that Theorem V.6 will be useful in

further investigations of how the internal tangent bundle associated to an orbit space relates to its

stratified tangent bundle.

In this paper, all manifolds are assumed to be Hausdorff, second-countable, smooth, and

without boundary, all vector spaces are assumed to be over R, and all linear maps R-linear, unless

explicitly stated otherwise. The term “diffeomorphism” refers to a conventional diffeomorphism

in the manifold sense when written in chapter III, but to a diffeological diffeomorphism (see

Definition II.2) elsewhere, again unless mentioned otherwise.



CHAPTER II

DIFFEOLOGICAL SPACES AND THE INTERNAL TANGENT SPACE

We lay out here the diffeological notions used in this work. Our primary references will

be [8] and [17], but we will also reference [7], [14], and both [18] and [34].

Definition II.1 ([17] Definition 1.5). A parametrization of a set X is any map p : U → X where

U ⊆ Rn (for some n ∈ {0}∪N) is open in the standard topology on Rn. A diffeological space X

is a nonempty set along with a specified set of paramatrizations of X , denoted DX , which satisfy

three conditions:

1. (covering) Every constant parametrization of X of the form p :Rn →X with p(Rn)=

{x} lies in DX , for every n ∈ {0}∪N and every x ∈ X .

2. (smooth compatibility) For every parametrization p : U → X of DX , and every open

subset V of Rm (for m ∈ {0}∪N), and every smooth map F : V → U , it is the case that

p◦F ∈ DX .

3. (locality) If p : U → X is a parametrization of X such that for every u ∈U there is an

open neighborhood V ⊆U of u for which the restricted map p|V lies in DX , then p ∈ DX .

The collection DX is called a diffeology on X , and the parametrizations in the diffeology

are called plots of the diffeological space X .

Definition II.2 ([17] Definition 1.14). A function f : X →Y between diffeological spaces is called

smooth if whenever p : U → X is a plot of X , then f ◦ p is a plot of Y . If a given smooth function

has an inverse that is also smooth, it is called a diffeomorphism.

Given two diffeological spaces X and Y , the set of smooth maps between them is denoted

C ∞(X ,Y ).

Example II.3. Every smooth manifold M can be viewed as a diffeological space with the diffe-

ology consisting of all smooth maps of manifolds of the form p : U → M (where again U ⊆ Rn,

n ∈ {0}∪N, is an open subset in the standard topology). The first requirement of Definition II.1

11
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is satisfied because all constant maps between manifolds are smooth, the second because compo-

sitions of smooth maps between manifolds remain smooth, and the third because smoothness of

maps between manifolds is a local concept. We call this collection of plots the standard diffeol-

ogy on the manifold M. In this case, the diffeologically smooth maps (both from M to M and from

M to another manifold N) are precisely those which are smooth in the usual sense (it is helpful to

use Boman’s Theorem here; see [2]). We assume this diffeology is the one given to all manifolds,

unless noted.

We term the smallest diffeology on a set X which contans a set of parametrizations A =

{pi : Ui → X}i∈I the diffeology generated by the collection A . This diffeology is comprised of

precisely the parametrizations p : U → X that either locally factor through the given functions via

smooth maps or are locally constant (only locally, due to conditions 2 and 3 in Definition II.1).

Example II.4. Fix n ∈ N. The space X = Rn is a manifold, hence it can be viewed as a diffeo-

logical space equipped with its standard diffeology of smooth maps p : U → Rn (for U open in

Rm, m ∈ {0}∪N). However, there is another diffeology that can be placed on X . The wire dif-

feology on X = Rn is the diffeology generated by the set of smooth parametrizations of Rn with

domain R; that is, by the set {p : R→Rn| p is a smooth parametrization of Rn}. It consists of all

parametrizations of Rn which locally factor through smooth one-dimensional parametrizations. X

is not diffeomorphic to Rn with the standard diffeology when n ≥ 2, as not all plots in the stan-

dard diffeology locally factor through a smooth curve in these cases. For instance, the identity

map id : Rn →Rn is not a plot unless n = 1, as this map is not constant and it does not factor even

locally as id = p ◦F (for p : U ⊆ R → Rn a plot in the wire diffeology and F : V ⊆ Rm → U a

smooth map, with U and V open sets) when n ≥ 2.

Example II.5. Any nonempty set X admits at least two (usually distinct) diffeologies: the indis-

crete diffeology consisting of all parametrizations p : U → X of X and the discrete diffeology

consisting of only the parametrizations of X which are locally constant. The first of these imme-
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diately satisfies the conditions required to be a diffeology given in Definition II.1; the second is

the diffeology on the space X generated by the constant parametrizations of X .

Remark. The usage of “indiscrete” and “discrete” in the naming of diffeologies is chosen so that

the D-topology on a nonempty set X (introduced in Definition II.8) is the indiscrete topology in

the usual sense when X is equipped with its indiscrete diffeology and the discrete topology in the

usual sense when X is equipped with its discrete diffeology.

Suppose there is an equivalence relation ∼ on a given diffeological space X . The smallest

diffeology on the quotient set X/∼ making the quotient map π : X ↠ X/∼ smooth is called the

quotient diffeology of X/∼, which makes it into a diffeological space. DX/∼ consists of all

parametrizations p : U → X/∼ that locally factor through the quotient map π . That is, locally

p = π ◦ p for p ∈ DX .

Example II.6. The orthogonal group of dimension 0, O(1), acts on R via the mapping ±1 · x =

±x. The orbit space R/O(1) is a diffeological space with quotient diffeology consisting of all

paramterizations p : Up → R/O(1) which locally factor as p = π ◦ p, for p : Up → R a smooth

map in the usual sense (that is, p lies in the standard diffeology on R; when the space being

quotiented is a manifold, it is not a typo that p and p share the same domain).

Indeed, the requirement that π be smooth means that all parametrizations of the form π ◦ p

must be included in the quotient diffeology on R/O(1), for p any plot in the standard diffeology

on R. It then follows that all parametrizations on R/O(1) that only locally factor as such must lie

in the quotient diffeology as well, due to the third condition in Definition II.1.

Suppose we have a subset A of a diffeological space Y . The largest diffeology on A for

which the inclusion map ι : A ↪→ Y is smooth is called the subset diffeology of A. By definition,

it consists of precisely the parametrizations p : U → A such that ι ◦ p is a plot in the diffeology

DY on Y .
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Example II.7. The subset [0,∞) of R has a subset diffeology consisting of all the parametrizations

p : U → [0,∞) such that ι ◦ p is a plot of the standard diffeology on R.

Indeed, all constant mappings into [0,∞) lie in the standard diffeology on R after compos-

ing with ι : [0,∞)→ R. Further, given a smooth map F : V →U between Euclidean open subsets

and a parametrization p : U → [0,∞) such that ι ◦ p is a smooth map, ι ◦ p ◦F remains smooth.

Lastly, if we have a parametrization p : U → [0,∞) such that locally ι ◦ p : U → R is a smooth

map, then because smoothness of maps between manifolds is local it follows that ι ◦ p is smooth

globally. All three conditions in Definition II.1 are satisfied.

Remark. Note that R/O(1) with the quotient diffeology is not diffeomorphic to [0,∞) with the

subset diffeology. See [3] for a plot only in the latter diffeology.

All diffeological spaces have a natural topology.

Definition II.8. If X is a diffeological space with diffeology DX , then a subset A of X is open in

the D-topology of X if and only if p−1(A) is open for each p ∈ DX (the domain of each plot is

equipped with the standard topology). An open set in this topology will be referred to as D-open,

when clarity is needed.

Because inverse images commute with unions and intersections, and the domains of all

plot maps are open sets, it follows that the D-topology is a topology.

When X and Y are two diffeological spaces equipped with their respective D-topologies,

any smooth map f : X → Y is also continuous. To see this, note that if UY is a D-open set in Y ,

then for every pY : V → Y in DY , p−1
Y (UY ) is open. Consider now f−1(UY ). Because for any plot

pX : U → X in DX , f ◦ p is a plot in DY , it follows that p−1
X ( f−1(UY )) = ( f ◦ pX)

−1(UY ) is open

in U , hence f−1(UY ) is D-open in X , meaning that f is continuous.

Example II.9. The D-topology on a smooth manifold equipped with the standard diffeology coin-

cides with the usual topology. Indeed, if a set U of an n-dimensional manifold M is D-open, then

the inverse image of U under a chart ϕ centered about any point x ∈U (which is a plot) is open in
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Rn equipped with the standard topology. However, because all chart maps are diffeomorphisms

from an open subset of the topological space M to Euclidean space with the standard topology, it

follows–after restricting as necessary–that each point x ∈U is contained in an open neighborhood

lying in U , hence U is an open set in the original topology on the manifold.

Conversely, if U ′ is an open set in the topology on M, then because any plot p in DM (the

standard diffeology) is, as a smooth map of manifolds, also continuous we have that p−1(U ′) is

open. Thus U ′ is D-open. Therefore, a set is open in the topology assigned to M as a manifold if

and only if it is D-open.

Let X be a diffeological space and Y a quotient set of X . There are a priori two topologies

relevant to this discussion which could be given to Y . First, the D-topology of the quotient diffeol-

ogy on Y . Second, the quotient topology of the D-topology on X . However, these two topologies

are actually the same (see [7] 3.3 or [17] 2.12).

Example II.10. When we have a manifold M and consider a quotient set of M, the D-topology on

the quotient is just the usual quotient topology (since the D-topology on M is in fact the standard

topology). In particular, the D-topology on R/O(1) is just the quotient topology arising from the

standard topology on R and induced by the quotient map π : R→ R/O(1).

The internal tangent space to a point of a diffeological space is an extension of the notion

of tangent space to a point of a manifold (as shown in Example II.12). It can be defined as a

colimit, but here shall be given concretely.

A plot pointing to x of a diffeological space X is a parametrization p : U → X in DX with

a connected domain which contains 0 such that p(0) = x (for some specified x ∈ X). These will

be called pointed plots when the x being pointed to is clear, and are written p : (U,0)→ (X ,x)

when greater clarity is needed.

Definition II.11 ([8] Definition 3.1 and [14]). Let x be an arbitrary point of a diffeological space

X . The internal tangent space to a point x in X , denoted Tx(X), is the quotient vector space
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F/R, where F is the sum

F =
⊕

p : (Up,0)→(X ,x), p∈DX

T0(Up)

indexed by the collection of pointed plots in DX and R ⊆ F is the space of vectors spanned by

those of the form (p,v)−(q,g∗(v)) for which there is a germ of smooth maps g : (Up,0)→ (Uq,0)

such that for the pointed plots p : (Up,0)→ (X ,x) and q : (Uq,0)→ (X ,x) we have p = q ◦ g as

germs. That is,

R = Span{(p,v)− (q,g∗(v))}

for which the following commutative diagram holds locally:

(Up,0)
g //

p $$

(Uq,0)

qzz
(X ,x)

Here, (p,v) denotes v ∈ T0(Up) (a tangent space in the usual sense) in the summand of F indexed

by p and (q,g∗(v)) denotes g∗(v) ∈ T0(Uq) in the summand of F indexed by q. An element of R

of the form (p,v)−(q,g∗(v)) will be termed a basic relation with Up the domain of the relation.

When two elements v1 and v2 are related in F/R, we will write v1 ∼ v2 as shorthand. This

means v1 − v2 ∈ R.

Remark. We sometimes omit the parentheses and index plots to simplify expressions. The el-

ement (p,v) ∈ F/R is also written as p∗(v) in the literature, though the plot p may not have a

differential in the usual sense.

Example II.12. Let M be a manifold of dimension n. We determine the internal tangent space of

an arbitrary point x ∈ M. It is known in this case that the internal tangent space aligns with the

tangent space (which is isomorphic–in the usual sense–to Rn).

Let x be an arbitrary point of the given manifold M. As laid out in Definition II.11, Tx(M)

is the quotient vector space F/R, where F = ⊕pT0(Up) with sum indexed over the pointed plots

p : (Up,0)→ (M,x) and R is the span of the vectors of the form (p,v)− (q,g∗(v)) for which there
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is a germ of smooth maps g : (Up,0)→ (Uq,0) such that for the pointed plots p : (Up,0)→ (X ,x)

and q : (Uq,0)→ (X ,x) we have p = q◦g as germs.

Now, in particular, let (U,ϕ) be a chart centered about x (guaranteed as M is a manifold)

and let p : Up → M be any plot in the standard diffeology on M mapping 0 to x. In this instance,

p is a smooth map in the conventional sense. We have the following diagram:

Up
ϕ◦p //

p   

ϕ(U)

ϕ−1
||

M

where p = ϕ−1 ◦ (ϕ ◦ p) as germs about 0, meaning (p,v)∼ (ϕ−1,(ϕ ◦ p)∗(v)) in F/R.

Now, suppose we have an arbitrary element w of F/R. Then w consists of an element of

F = ⊕pT0(Up) with only finitely many nonzero components vi ∈ T0(Upi), modulo the relations

in R. In fact, due to these relations it is the case that for each nonzero component vi, we have

w ∼ w+[−(pi,vi)+(ϕ−1,(ϕ ◦ pi)∗(vi))].

Therefore, the above work shows that any element of F/R is equivalent to an element

whose only nontrivial summand term (if any) lies in T0(ϕ(U)) and so we obtain a surjective

homomorphism mapping T0(ϕ(U))↠ F/R. Since T0(ϕ(U)) ∼= Rn, it only remains to show our

mapping is injective. To do so, it is sufficient to show that the distinct elements in the summand

T0(ϕ(U)) of F remain distinct in F/R.

Indeed, if two elements v and w of F whose only nontrivial terms were contained in

T0(ϕ(U)) were equivalent (that is, v ∼ w), then we would have v−w ∈ R (though not necessarily

a basic relation). That is,

(ϕ−1,v)− (ϕ−1,w) = (ϕ−1,v−w) = ∑
i

ci[(pi,vi)− (qi,gi
∗vi)] (II.13)
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for ci ∈R, pi,qi pointed plots mapping 0 to x, each gi a germ of smooth maps such that pi = qi ◦gi

as germs, and vi ∈ T0(Upi). Note the above equality also holds in F , prior to modding out by R,

and we will think of it in this sense below.

Because the equality above holds in F , note that because the left-hand side consists solely

of elements from the summand corresponding to the plot ϕ−1, any elements on the right-hand side

corresponding to other summands (i.e., plots pi or qi not equal to ϕ−1) must cancel completely

with solely other elements on the right-hand side or be zero. Now, expand the above equation to:

∑
i

ci[(pi,vi)− (qi,gi
∗vi)] = ∑

i
ci[(pi,vi)− (ϕ−1,(ϕ ◦ pi)∗vi)]

+∑
i

ci[(ϕ
−1,(ϕ ◦ pi)∗vi)− (ϕ−1,(ϕ ◦qi)∗gi

∗vi)]

+∑
i

ci[(ϕ
−1,(ϕ ◦qi)∗gi

∗vi)− (qi,gi
∗vi)]

and then rewrite the right-hand side as

∑
i

ci[(ϕ
−1,(ϕ ◦ pi)∗vi)− (ϕ−1,(ϕ ◦qi)∗gi

∗vi)] (II.14)

+∑
i

ci[(pi,vi)− (ϕ−1,(ϕ ◦ pi)∗vi)+(ϕ−1,(ϕ ◦qi)∗gi
∗vi)− (qi,gi

∗vi)] (II.15)

Now, regroup the related pairs of II.15 not by index, but rather by plot. That is, whenever

pi agrees with some other p j or qk (and likewise for plots qi), group all such pairs (pi,vi)−

(ϕ−1,(ϕ ◦ pi)∗vi) or (ϕ−1,(ϕ ◦ qi)∗gi
∗vi)− (qi,gi

∗vi) together. With this organization, where we

label groups of the same plot using only p′s (no longer q′s), expression II.14/II.15 becomes:

(ϕ−1,v−w) = ∑
i

ci[(ϕ
−1,(ϕ ◦ pi)∗vi)− (ϕ−1,(ϕ ◦qi)∗gi

∗vi)]
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+
m1

∑
j=1

c1
j [(p1,v1

j)− (ϕ−1,(ϕ ◦ p1)∗v1
j)]

+
n1

∑
k=1

c1
k [(ϕ

−1,(ϕ ◦ p1)∗(g1,k)∗v1
k)− (p1,(g1,k)∗v1

k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (ϕ−1,(ϕ ◦ pN)∗vN
j )]

+
nN

∑
k=1

cN
k [(ϕ

−1,(ϕ ◦ pN)∗(gN,k)∗vN
k )− (pN ,(gN,k)∗vN

k )]

where it is possible that mi or ni may be zero. We now proceed to show the above collection of

sums equals zero. First, note that because we have pi = qi ◦gi as germs about 0, it is the case that

ϕ∗pi∗ = ϕ∗qi∗gi
∗. Therefore

∑
i

ci[(ϕ
−1,(ϕ ◦ pi)∗vi)− (ϕ−1,(ϕ ◦qi)∗gi

∗vi)] = ∑
i

ci[(ϕ
−1,(ϕ ◦ pi)∗vi)− (ϕ−1,(ϕ ◦ pi)∗vi)] = 0

and so this entire sum (the first part of our expanded expression) can be eliminated from the

expression for (ϕ−1,v−w). This leaves us with

(ϕ−1,v−w) =
m1

∑
j=1

c1
j [(p1,v1

j)− (ϕ−1,(ϕ ◦ p1)∗v1
j)]

+
n1

∑
k=1

c1
k [(ϕ

−1,(ϕ ◦ p1)∗(g1,k)∗v1
k)− (p1,(g1,k)∗v1

k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (ϕ−1,(ϕ ◦ pN)∗vN
j )]

+
nN

∑
k=1

cN
k [(ϕ

−1,(ϕ ◦ pN)∗(gN,k)∗vN
k )− (pN ,(gN,k)∗vN

k )]

Now, observe that if pℓ = ϕ−1 for one of our remaining N groupings, then said grouping

takes the form
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mℓ

∑
j=1

cℓj[(ϕ
−1,vℓj)− (ϕ−1,(ϕ ◦ϕ

−1)∗vℓj)]+
nℓ

∑
k=1

cℓk[(ϕ
−1,(ϕ ◦ϕ

−1)∗(gℓ,k)∗vℓk)− (ϕ−1,(gℓ,k)∗vℓk)] = 0

Therefore, such a group can be eliminated. We have so far shown that for any v and w

equivalent in the summand T0(ϕ(U)) of F (where F/R is the internal tangent space to x in M) can

be expressed as

(ϕ−1,v−w) =
m1

∑
j=1

c1
j [(p1,v1

j)− (ϕ−1,(ϕ ◦ p1)∗v1
j)]

+
n1

∑
k=1

c1
k [(ϕ

−1,(ϕ ◦ p1)∗(g1,k)∗v1
k)− (p1,(g1,k)∗v1

k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (ϕ−1,(ϕ ◦ pN)∗vN
j )]

+
nN

∑
k=1

cN
k [(ϕ

−1,(ϕ ◦ pN)∗(gN,k)∗vN
k )− (pN ,(gN,k)∗vN

k )]

where pℓ ̸= ϕ−1. We now show that these remaining terms can also be eliminated. Indeed, for

such a grouping associated to a plot pℓ, namely

mℓ

∑
j=1

cℓj[(pℓ,vℓj)− (ϕ−1,(ϕ ◦ pℓ)∗vℓj)]+
nℓ

∑
k=1

cℓk[(ϕ
−1,(ϕ ◦ pℓ)∗(gℓ,k)∗vℓk)− (pℓ,(gℓ,k)∗vℓk)]

=

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(g
ℓ,k)∗vℓk

)
+

(
ϕ
−1,−

mℓ

∑
j=1

cℓj(ϕ ◦ pℓ)∗vℓj +
nℓ

∑
k=1

cℓk(ϕ ◦ pℓ)∗(gℓ,k)∗vℓk

)

we must have that the first term in the second line above satisfies

mℓ

∑
j=1

cℓj(pℓ,vℓj)−
nℓ

∑
k=1

cℓk(pℓ,(gℓ,k)∗vℓk) =

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(g
ℓ,k)∗vℓk

)
= 0 (II.16)
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because pℓ ̸= ϕ−1 and, as noted initially (see the paragraphs following II.13), such terms must

cancel completely (and only with other terms indexed by the same plot pℓ). Now, as all vℓj and

(gℓ,k)∗vℓk lie in T0(Upℓ) for all j,k, we can apply the differential ϕ∗pℓ∗ to this collection of vectors

to observe that

0 =−1 ·ϕ∗pℓ∗

[
mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(g
ℓ,k)∗vℓk

]
(II.17)

=−
mℓ

∑
j=1

cℓjϕ∗pℓ∗vℓj +
nℓ

∑
k=1

cℓkϕ∗pℓ∗(gℓ,k)∗vℓk (II.18)

From the above equations II.16 and II.18, it follows that

mℓ

∑
j=1

cℓj[(pℓ,vℓj)− (ϕ−1,(ϕ ◦ pℓ)∗vℓj)]+
nℓ

∑
k=1

cℓk[(ϕ
−1,(ϕ ◦ pℓ)∗(gℓ,k)∗vℓk)− (pℓ,(gℓ,k)∗vℓk)]

=

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(g
ℓ,k)∗vℓk

)
+

(
ϕ
−1,−

mℓ

∑
j=1

cℓj(ϕ ◦ pℓ)∗vℓj +
nℓ

∑
k=1

cℓk(ϕ ◦ pℓ)∗(gℓ,k)∗vℓk

)

= 0

as desired. Hence each remaining term in the expression for (ϕ−1,v−w) can be eliminated. This

means that overall (in F , before modding out by R)

(ϕ−1,v−w) =
m1

∑
j=1

c1
j [(p1,v1

j)− (ϕ−1,(ϕ ◦ p1)∗v1
j)]

+
n1

∑
k=1

c1
k [(ϕ

−1,(ϕ ◦ p1)∗(g1,k)∗v1
k)− (p1,(g1,k)∗v1

k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (ϕ−1,(ϕ ◦ pN)∗vN
j )]

+
nN

∑
k=1

cN
k [(ϕ

−1,(ϕ ◦ pN)∗(gN,k)∗vN
k )− (pN ,(gN,k)∗vN

k )]
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= 0

This means that v ∼ w if and only if v = w in T0(ϕ(U)), giving the conclusion. Therefore,

when we have a manifold M of dimension n, its internal tangent space at a point x in M, given

by F/R, is isomorphic to T0(ϕ(U)) ∼= Rn, where (U,ϕ) is a chart centered about x in M. The

notion of internal tangent space at a point is identical to the notion of tangent space at a point, for

a manifold.

Example II.19. The internal tangent space to a point is defined for any diffeological space, in-

cluding spaces which are not manifolds. As we are studying the orbit spaces of manifolds which

are acted upon by proper Lie group actions, consider the specific case of the orbit space of the

manifold R acted on by O(1), the orthogonal group of dimension 0, equipped with the quotient

diffeology. This action consists of the automorphisms x 7→ x and x 7→ −x. For more details on the

Lie theory involved, see the following chapter.

It is known that for [x] ∈ R/O(1), T[x](R/O(1)) ∼= R when [x] ̸= [0] and T[0](R/O(1)) =

{0} (see [8] Example 3.24). We proceed to show both of these results, as an elucidation of our

methods. Again, we employ Definition II.11 and view the internal tangent space to a point as the

quotient F/R, and let π : R→ R/O(1) denote the projection map.

When looking at a point [x] ̸= [0] in R/O(1), the argument is akin to the case when the

space is a manifold. Indeed, consider a chart (U,ϕ) centered about |x| in R with domain an open

interval including |x| but not 0. With this setup, π ◦ϕ−1 is a plot in the quotient diffeology on

R/O(1) mapping 0 to [x]. Now, let p : Up → R/O(1) be any plot in the quotient diffeology on

R/O(1) mapping 0 to [x]. As p lies in the quotient diffeology, we have that locally about 0 in Up,

p = π ◦ p for p a conventional smooth map Up → R (i.e., a plot in the standard diffeology on R).

Because p(0) = [x], we may assume p(0) = |x|. We then have the following diagram:
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Up
ϕ◦p //

p ##

ϕ(U)

π◦ϕ−1zz
R/O(1)

where p = π ◦ p = π ◦ϕ−1 ◦ϕ ◦ p as germs, meaning (p,v)∼ (π ◦ϕ−1,(ϕ ◦ p)∗(v)) in F/R.

We now address the question of well-definedness. Indeed, it is possible that p = π ◦ p′

as germs about 0 for some p′ distinct from p. However, when this occurs then we must have

π ◦ p = π ◦ p′ as germs about 0, meaning that for w in a neighborhood of 0 in Up we have

p(w) =±p′(w) (II.20)

However, as both p and p′ are smooth maps in the usual sense (as elements of the standard

diffeology on R) and p(0) = [x] ̸= [0] we must have either p(w) = p′(w) as germs or p(w) =

−p′(w) as germs about 0 (i.e., there is a neighborhood of 0 about which the sign does not change).

Here we are explicitly using that [x] ̸= [0]. Furthermore, because ϕ is centered around |x| and

does not include −|x| in its domain, we only have π ◦ p′ = π ◦ ϕ−1 ◦ ϕ ◦ p′, that is, (p,v) ∼

(π ◦ ϕ−1,(ϕ ◦ p′)∗(v)) for some p′ distinct from p if p′(0) = p(0) = |x|, which by the above

implies p = p′ as germs about 0. Thus, our usage of p is unambiguous.

What the discussion so far means is that, as with the internal tangent space to a point of a

manifold, we again obtain a surjective homomorphism mapping T0(ϕ(U))↠F/R= T[x](R/O(1))

when [x] ̸= [0] (though now the summand corresponds to plot π ◦ϕ−1). Since T0(ϕ(U)) ∼= R in

this example, it again remains to show the mapping is injective.

We can proceed akin to Example II.12. Indeed, if two elements v and w of F whose only

nontrivial terms were contained in T0(ϕ(U)), now corresponding to plot π ◦ϕ−1, were equivalent,

then we would have v−w ∈ R, meaning
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(π ◦ϕ
−1,v−w) = ∑

i
ci[(pi,vi)− (qi,gi

∗vi)]

where ci ∈R, pi,qi are pointed plots mapping 0 to [x], each gi is a germ of smooth maps such that

pi = qi ◦gi as germs, and vi ∈ T0(Upi). The above equality holds in F . One can then expand and

group our plots as in Example II.12, obtaining

(π ◦ϕ
−1,v−w) = ∑

i
ci[(π ◦ϕ

−1,(ϕ ◦ pi)∗vi)− (π ◦ϕ
−1,(ϕ ◦qi)∗gi

∗vi)]

+
m1

∑
j=1

c1
j [(p1,v1

j)− (π ◦ϕ
−1,(ϕ ◦ p1)∗v1

j)]

+
n1

∑
k=1

c1
k [(π ◦ϕ

−1,(ϕ ◦ p1)∗(g1,k)∗v1
k)− (p1,(g1,k)∗v1

k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π ◦ϕ
−1,(ϕ ◦ pN)∗vN

j )]

+
nN

∑
k=1

cN
k [(π ◦ϕ

−1,(ϕ ◦ pN)∗(gN,k)∗vN
k )− (pN ,(gN,k)∗vN

k )]

Now, because we have pi = qi ◦gi as germs, locally about 0 it must be the case for w ∈Up

that pi(w) =±qi(gi(w)) (recall from the discussion surrounding II.20 that the pi and qi plots such

that pi = π ◦ pi and qi = π ◦qi can be chosen unambiguously). Then, because pi(0) = qi(gi(0)) =

|x|> 0, we must have pi = qi◦gi as germs as well. Thus, ϕ∗pi∗=ϕ∗qi∗gi
∗. With this dealt with, one

can proceed analogously to Example II.12 to conclude that T[x](R/O(1)) = F/R ∼= T0(ϕ(U))∼=R

when [x] ̸= 0.

We now show T[0](R/O(1)) = {0}. For any internal tangent vector of the form (p,v) ∈

F/R= T[0](R/O(1)), because p lies in the quotient diffeology on R/O(1) it is the case that locally

p = π ◦ p for p a plot in the standard diffeology on R. Because π is a pointed plot when [x] = [0],

we have the following commutative diagram:
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Up
p //

p ##

R

π||
R/O(1)

That is, (p,v)−(π, p∗(v)) is in R. So, to complete our argument we need to show (π,v)= 0

for all v ∈ T0(R). If we take g : R→ R to be the automorphism g(x) = −x (that is, the action of

−1 ∈ O(1) on R), we have the following diagram:

R g //

π ##

R

π{{
R/O(1)

where we have π = π ◦g as germs (in fact, they are identically equal), meaning, for any v ∈ T0(R),

(π,v) ∼ (π,g∗(v)) = (π,−v). That is, in T[0](R/O(1)) = F/R, we have 0 = (π,v)+ (π,−v) =

(π,2v), for any v ∈ T0(R). This is the desired result.

While illustrative, there are still several factors at play in Example II.19 which differentiate

it from the general case. In particular, the action of O(1) is a compact linear group action on

a Euclidean space consisting of finitely-many well-understood elements. The general problem

requires a more sophisticated tack.

We close this chapter with two theoretical results concerning the internal tangent space

to a point of a diffeological space. First, it is known that the relations between internal tangent

vectors are determined by the two-dimensional plots.

Proposition II.21 ([8] Proposition 3.4). Given a diffeological space X, let X ′ denote the diffeo-

logical space with the same underlying set but with diffeology generated by all plots p : R2 → X,

for p ∈ DX . The spaces Tx(X ′) and Tx(X) are isomorphic.

Example II.22. This example, drawn from [8] Example 3.22, shows that we indeed need two-

dimensional plots in Proposition II.21. That is, the internal tangent space of a diffeological space
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at a point is NOT determined by the one-dimensional plots. Let X =Rn be equipped with the wire

diffeology introduced in Example II.4. It is the case that Tx(X) has uncountable dimension when

n ≥ 2 for any point x ∈ X . In particular, the higher-dimensional plots which allow for dimension-

reducing relations do not in general factor through the 1-dimensional plots, and so aren’t present.

For example, in the case where n = 2, the internal tangent vectors (pα ,
d
dt ) for α ∈ R are all

linearly independent, where pα : R→ X sends x to (x,αx).

Another known result is that, as with the tangent space to a point of a manifold, the notion

of internal tangent space to a point of a diffeological space is “local.”

Lemma II.23 ([8] Proposition 3.6). Let A be a D-open neighborhood of x in a diffeological space

X, equipped with the subset diffeology. The spaces Tx(A) and Tx(X) are isomorphic.

Remark. In light of the discussion preceding Example II.10, when X is a manifold or a quotient

space arising from a manifold, the condition of being D-open can be replaced by being open in

the standard topology or open in the quotient topology, respectively, in Lemma II.23.



CHAPTER III

LIE THEORY

In order to understand the general structure of the internal tangent space to a point of an

orbit space of a manifold acted upon by a proper Lie group action, we need to first introduce

the necessary definitions and results concerning Lie groups and their actions, along with those

concerning Lie algebras. Our primary reference will be [12], though material from [22], [33], and

[24] is also helpful. In this chapter, diffeomorphism means diffeomorphism of manifolds in the

usual sense, unless explicitly noted.

Definition III.1. A Lie group is a group G which also has the structure of a smooth manifold,

under which the group operations of multiplication and inversion, given below, are smooth.

multiplication : G×G → G, (a,b) 7→ ab

inversion : G → G, a 7→ a−1

We shall denote the identity element of a Lie group by 1.

Definition III.2. The tangent space to the identity, g= T1G, provided with the usual Lie bracket,

is called the Lie algebra of the Lie group G.

Our focus is on the orbit spaces of manifolds under Lie group actions, in particular when

these orbit spaces are not manifolds. In this paper, we define an action as follows.

Definition III.3. A Lie group action (or herein just “action”) of a Lie group G on a manifold M

is a smooth mapping A : G×M → M such that

A(gh,x) = A(g,A(h,x)), g,h ∈ G,x ∈ M.

We will also often suppress the action and write g ·x for A(g,x), and we will also sometimes write

A(g,x) as either (A(g))(x) or A(g)(x).

27
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Remark. Throughout this document, “action” will mean precisely the above. Therefore, all ac-

tions considered arise from Lie groups, are smooth, and act on manifolds as described, even if not

explicitly mentioned. The above is more specifically a “left action,” and right actions are defined

analogously.

An action of a group G on a manifold M is said to be proper if the mapping

(g,x) 7→ (g · x,x)

is a proper mapping G×M → M×M, meaning that the inverse image of every compact set in the

codomain is compact in the domain.

For each x ∈ M, for M a manifold, the orbit of the action A through x is the set:

A(G)(x) = G · x = {g · x | g ∈ G}

Remark. We can also think of the orbit through x as the image of the mapping Ax : G → M such

that g 7→ A(g)(x). As this will be a useful notion later, we note it here.

We denote by M/G the collection of orbits (which are equivalence classes, because the set

of orbits forms a partition for M) of an action of G on a manifold M and by π : M → M/G the

canonical projection. Some authors use the notation G\M for the orbits of a left action, reserving

M/G for the orbits of a right action, but we will not follow this convention. Assign the quotient

topology and quotient diffeology to M/G (via π), and note that this topology is Hausdorff when

the action is proper ([12] Lemma 1.11.3).

An action is said to be transitive if G · x = M for some x ∈ M. For each x ∈ M, we define

the stabilizer of x under the action to be the subgroup of G given by:

Gx = {g ∈ G | g · x = x}
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The stabilizer can be shown to be compact when the action is proper. Indeed, for a proper

action of a Lie group G on M consider the inverse image of the compact set {(x,x)} ∈ M ×M

under the mapping (g,x) 7→ (g · x,x).

An action is free if Gx = {1} for all x ∈ M. It is shown in [12] (Theorem 1.11.4) that

when G admits a proper and free action on a manifold M there is a unique manifold structure on

M/G. Therefore, for our purposes in determining the internal tangent space to points of quotients

of manifolds by proper Lie group actions, we are interested in actions which are proper but not

free. We now address several more specialized results and definitions.

Definition III.4. If A, and B, are actions of a Lie group G on manifolds X , and Y , respectively,

we say a mapping Φ : X → Y is G-equivariant if

(Φ◦A(g))(x) = (B(g)◦Φ)(x), g ∈ G

for all x ∈ X . If the map Φ is a G-equivariant diffeomorphism then we call it an equivalence of

actions, and say the actions are equivalent.

In light of this, note that the below theorem says that the action of a compact Lie group

K on a manifold M which fixes a point x0 is, when restricted to a specified K-invariant open

neighborhood U of x0, equivalent to a linear action of K on Tx0M, suitably restricted to an open

neighborhood of 0 (see [12], p. 98).

Theorem III.5 ([12] Theorem 2.2.1; Bochner’s Linearization Theorem). Let A be a Lie group

action of a compact group K on M and let x0 ∈ M be such that A(k)(x0) = x0, for all k ∈ K. Then

there exists a K-invariant open neighborhood U ⊆ M of x0 and a diffeomorphism χ from U onto

an open neighborhood V ⊆ Tx0M of 0, such that:

χ(x0) = 0, χ∗|x0 = id : Tx0M → Tx0M

and:

χ(A(k)(x)) = (A(k)∗|x0)(χ(x)), k ∈ K,x ∈U
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Note that above and throughout this document, we identify T0(TxM) with TxM, hence the

codomain of our differential map in Theorem III.5.

Remark. Within the scope of this document, the tangent action is defined as follows: given an

action–denoted by A–of K a compact Lie group on a manifold M which fixes a point x ∈ M, the

tangent action by an element k ∈ K on TxM is the differential of the map A(k) : M → M mapping

x to k · x, at x. That is, the tangent action, itself a compact action, can be thought of as the C ∞

homomorphism sending k 7→ (A(k))∗|x.

In our work, K will usually be the stabilizer to a point x0, namely Gx0 , in a given manifold

M acted on by a Lie group G, which we recall is compact when the action of G on M is proper.

Definition III.6 ([12] Definition 2.3.1). Let A : G×M → M be an action of a Lie group G on a

manifold M. A (smooth) slice at x0 ∈ M for the action A is a submanifold S of M through x0 such

that:

1. Tx0M = (Ax0)∗|1(g)⊕Tx0S; and TxM = (Ax)∗|1(g)+TxS, x ∈ S;

2. S is Gx0-invariant;

3. if g ∈ G,x ∈ S, and g · x ∈ S, then g ∈ Gx0 .

Recall that Ax0 : G → M is the map sending g to A(g)(x0).

Remark. G · x0 is an immersed submanifold of M, and we have (Ax0)∗|1(g) = Tx0(G · x0), as

mentioned in [12] on pages 56−57 and 95.

Slices are a crucial tool available when studying a proper Lie group action.

Theorem III.7 ([12] Theorem 2.3.3; Slice Theorem). For A a proper action of a Lie group G on

a manifold M, there exists a slice S through x0 (which depends on x0), for any x0 ∈ M.

The following theorem draws on the results above to show that, in effect, we can locally

about a point x0 in M view any proper action of a Lie group G on said manifold M as the compact,
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linear tangent action of Gx0 on Tx0S, thereby simplifying our study of the internal tangent space

(see chapter IV). Before stating this result, we explain the central notation and actions involved.

Let X and Y be smooth manifolds and H a Lie group action acting on both X and Y (the

actions may be distinct). Assume the action of h ∈ H on X is proper and free, and denote it by

x 7→ x · h−1. Denote the action of H on Y by y 7→ h · y. Due to Theorem 1.11.4 of [12], the orbit

space X/H is a manifold. The action of H of X ×Y , defined by:

(h,(x,y)) 7→ (x ·h−1,h · y), h ∈ H,(x,y) ∈ X ×Y

is proper and free as well (see [12] section 2.4). Therefore, taking [x,y] to be the orbit of (x,y) in

X ×Y under the action of H, the quotient space is a smooth manifold, denoted:

X ×H Y = {[x,y] | (x,y) ∈ X ×Y}

Now let G be another Lie group which acts on X , such that furthermore its action commutes

with the action of H on X given above. In this case, the action (g,(x,y)) 7→ (g ·x,y) of G on X ×Y

also commutes with the action of H on X ×Y , so its action on X ×H Y is well-defined (again, see

[12] section 2.4).

In Theorem III.8, below, we consider the specific case when H is a closed Lie subgroup of

G, X = G, H acts on G via right multiplication, and G acts on G via left multiplication. Note that

G acts transitively on G/H in this case.

Theorem III.8 ([12] Theorem 2.4.1; Equivariant Tube Theorem). Let A be a proper action of a Lie

group G on a manifold M. About any point x0 ∈ M, there exists a G-invariant open neighborhood

U of x0 such that the G-action on U is equivalent to the action of G on G×Gx0
B. Here, B is an

open Gx0-invariant neighborhood of 0 in Tx0M/((Ax0)∗|1)(g), on which the compact group Gx0

acts linearly, via the tangent action of (A(k))∗|x0 (for k ∈ Gx0) modulo ((Ax0)∗|1)(g).
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Recall that it can be shown that (Ax0)∗|1(g) = Tx0(G · x0). We utilize this going forward.

There are some important structural aspects of the tangent space Tx0M of a manifold M at a point

x0 and the action on it by the tangent action of the compact stabilizer Gx0 . We address below

the salient points, and then indicate how they relate to slices, Theorem III.7, and Theorem III.8.

Throughout the below material, we consider a point x0 of a manifold M of dimension n acted upon

by a proper Lie group action of a group G with stabilizer at x0 denoted Gx0 . The action of Gx0 is

the relevant tangent action until noted.

As discussed in [12], in particular pages 96−97, from an arbitrary inner product on Tx0M

one can always construct an inner product which is invariant under the tangent action of Gx0 .

It is shown in the proof of Theorem III.7 from [12] that the subspace Tx0(G · x0) is in-

variant under the tangent action by Gx0 , hence it is an easy exercise to show that its orthogonal

complement Tx0(G · x0)
⊥ is as well. This uses the invariant inner product guaranteed above.

Further, it can be shown in this case–where Gx is compact and acts linearly on TxM with

given invariant inner product–that TxM can be identified with Euclidean space Rn with its Eu-

clidean inner product on which Gx acts orthogonally. Therefore, we shall identify TxM and its

Gx-invariant subspaces Tx0(G ·x0) and Tx0(G ·x0)
⊥ with the Euclidean space Rk (for the appropri-

ate k in each case) in the work below.

It also follows from the proof of Theorem III.7 given in [12] that the slice S to a point

x0 ∈ M corresponding to the proper action of a Lie group is Gx0-equivariantly diffeomorphic to

Tx0(G · x0)
⊥ (here the action of Gx0 on S is that of a subgroup of G, and on Tx0(G · x0)

⊥ is the

tangent action on the invariant subspace). Indeed, directly from the proof we have that our slice

S is Gx0-equivariantly diffeomorphic to V ∩ Tx0(G · x0)
⊥ where V is a ball of some fixed radius

ε about 0 in Rn and Tx0(G · x0)
⊥ = Rk is a subspace of Rn. There is, however, a natural Gx0-

equivariant diffeomorphism from V ∩Tx0(G · x0)
⊥ to Rk = Tx0(G · x0)

⊥ given by

κ(x) =
1

ε2 −||x||2
x
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in light of the fact that || · ||, the norm induced from the invariant inner product above, is invariant

under the action.

Furthermore, Tx0(G · x0)
⊥ can be Gx0-equivariantly identified with Tx0M/Tx0(G · x0). In-

deed, given an element v⊥ ∈ Tx0(G ·x0)
⊥, the mapping ω defined by ω(v⊥) = [v⊥]∈ Tx0M/Tx0(G ·

x0) is a Gx0-invariant mapping due to the invariance of Tx0(G · x0) and Tx0(G · x0)
⊥ under the

tangent action. When the Gx0-action on Tx0M has descended to the quotient, as here where

h · [v⊥] := [h · v⊥] (for h ∈ Gx0), we sometimes refer to it as the isotropy action. We record

the conclusion of this discussion below.

Proposition III.9. Let x0 be a point of a manifold M of dimension n acted upon by a proper

Lie group action of a group G with stabilizer at x0 denoted Gx0 and with slice S through x0 as

in Theorem III.7. In the language of Definition III.4, S, Tx0(G · x0)
⊥, and Tx0M/Tx0(G · x0) are

Gx0-equivalent. The action on S is the action of Gx0 thought of as a subgroup of G, the action on

Tx0(G ·x0)
⊥ (thought of as an invariant subspace of Tx0M) is the tangent action associated to Gx0 ,

and the action on Tx0M/Tx0(G · x0) is the isotropy action resulting from the tangent action.

One of the implications of this as related to Theorem III.8 and important in the following

chapter is that for our purposes we can and shall take B, the open Gx0-invariant neighborhood of

zero in Tx0M/Tx0(G ·x0) described in said theorem, to be Tx0M/Tx0(G ·x0) itself. This is immediate

from the proof in [12], page 103, and the above paragraphs.



CHAPTER IV

THE STRUCTURE OF THE INTERNAL TANGENT SPACE

We are now in a position to describe the general internal tangent space to a point of a quo-

tient of a manifold by a proper Lie group action. The key will be the ability to utilize (especially)

Theorem III.8 to reduce this problem to the case of a compact group acting linearly on a suitable

space.

Indeed, suppose we are given a manifold M and a proper Lie group action A of a Lie group

G on M. We wish to determine T[x](M/G) for an arbitrary [x] ∈ M/G. Note first that, in this case,

as vector spaces we have dim(T[x](M/G))≤ dim(TxM).

The key simplification of the actual problem is as follows. By Theorem III.8, we have a G-

invariant open neighborhood U of x0 in M such that the G-action on U is equivalent to the action of

G on G×Gx0
B, with B = Tx0M/Tx0(G · x0). In particular, there is a G-equivariant diffeomorphism

Φ : U → G×Gx0
B. The following lemma will turn this consequence into Corollary IV.2. Note that

Φ is both a diffeomorphism in the sense of smooth manifolds and, immediately, a diffeological

diffeomorphism. In this chapter we return to the overall convention that “diffeomorphism” refers

to a diffeological diffeomorphism unless noted otherwise. We begin with the following lemma.

Lemma IV.1. Let X and Y be manifolds with their standard diffeologies both acted upon by Lie

group actions of a group G, and φ : X → Y a G-equivariant diffeomorphism between them. Then

φ descends to a G-equivariant diffeomorphism on the quotients φ̃ : X/G → Y/G.

Proof. Because φ is G-equivariant, it maps G-orbits onto G-orbits and so descends to a map

between the quotients, denoted φ̃ , where φ̃([x]) = [φ(x)], for x ∈ X . It remains to show this map

is a diffeomorphism.

First, we show the map is smooth. Given a plot p(t) in the quotient diffeology of X/G,

we claim that φ̃(p(t)) is a plot in the quotient diffeology of Y/G. Indeed, locally about any point

t0 in its domain, we have p(t) = π(p(t)) = [p(t)] for p a plot in the diffeology on X and π the

canonical projection. Thus, for t in a neighborhood of t0,

34
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φ̃(p(t)) = φ̃([p(t)]) = [φ(p(t))]

If p′ is another plot in the diffeology on X such that p(t) = π(p′(t)) = [p′(t)] near t0, we

also have for t in a neighborhood of t0

φ̃(p(t)) = φ̃([p′(t)]) = [φ(p′(t))]

However, because p(t) = [p(t)] = [p′(t)] as germs about t0 and φ is G-equivariant, we have

that [φ(p(t))] = [φ(p′(t))] in another, perhaps smaller neighborhood of t0. Hence, the map φ̃(p(t))

has an unambiguous meaning locally. Because φ(p(t)) is a plot in Y due to the smoothness of

φ , meaning π(φ(p(t))) = [φ(p(t))] is a plot in the quotient diffeology for Y/G, and because

φ̃(p(t)) = [φ(p(t))] in a neighborhood of t0, by the locality condition of diffeologies (item 3 in

Definition II.1) φ̃(p(t)) is globally a plot in the quotient diffeology of Y/G as well (since t0 was

an arbitrary domain point). Thus, φ̃ maps plots to plots and so is smooth.

Further, since the map φ is an equivariant diffeomorphism, its inverse φ−1 also descends

to the quotients, now denoted φ̃−1, sending φ̃−1([y]) = [φ−1(y)] for y ∈ Y . This map is likewise

smooth and is still an inverse map, as

φ̃
−1(φ̃([x])) = [φ−1(φ(x))] = [x]

φ̃(φ̃−1([y])) = [φ(φ−1(y))] = [y]

Thus φ̃ is a diffeomorphism X/G → Y/G.

This leads immediately to the following.

Corollary IV.2. The G-equivarant diffeomorphism Φ : U → G×Gx0
B given by Theorem III.8

descends to a G-equivariant diffeomorphism on the quotients:

Φ̃ : U/G → (G×Gx0
B)/G
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Now, we link the orbit space M/G which is the focus of our study to a space which has an

oftentimes nicer collection of internal tangent spaces.

Theorem IV.3. Let M be a manifold and G a Lie group acting properly on M. Given a point x0 ∈

M, with stabilizer Gx0 under the action, the following spaces are diffeomorphic, where Ũ ⊆ M/G

is the neighborhood U/G of [x0] ∈ M/G coming from Corollary IV.2, G×Gx0
B is as described in

and preceding Theorem III.8, B = Tx0M/Tx0(G · x0) as described following Theorem III.8, and S

is a slice through x0 in M guaranteed by Theorem III.7.

M/G ⊇ Ũ ∼= (G×Gx0
B)/G ∼= B/Gx0

∼= Tx0S/Gx0

where the action on G×Gx0
B is multiplication of the first component by G, the action on B is the

isotropy action induced by the tangent action of Gx0 , and the action on Tx0S = T0(Tx0(G · x0)
⊥) =

Tx0(G · x0)
⊥ is the tangent action of Gx0 .

Proof. The first isomorphism, Ũ ∼= (G×Gx0
B)/G, is Corollary IV.2. For the second isomorphism,

observe that (G×Gx0
B)/G = [1]×Gx0

B, which is immediately diffeomorphic to B/Gx0 due to the

definition of the manifold G×Gx0
B (the second components of plots in the standard diffeology

on this manifold are the plots of B/Gx0). This step is also found in both [34], Lemma 3.17, and

[18], Lemma 5.9. The last isomorphism follows from Proposition III.9 and Lemma IV.1, after

considering the resulting differentials. This is due to the fact that Tx0S = T0(Tx0(G ·x0)
⊥), and that

T0(Tx0(G · x0)
⊥) = Tx0(G · x0)

⊥.

Note that [x0]∈ M/G is mapped to [0] in B/Gx0 and Tx0S/Gx0 . This follows from Theorem

III.5, which is used in the proof of Theorem III.7 and, through this, Theorem III.8.

The below theorem is the main result of this chapter, though in our work we will employ

a corollary of it which utilizes Theorem IV.3.

Theorem IV.4. The internal tangent space to a point is a diffeological invariant. That is, if

χ : X → Y is a diffeomorphism mapping a point x to y = χ(x), then Tx(X)∼= Ty(Y ).
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Proof. Recalling Definition II.11, suppose Tx(X)=F/R and Ty(Y )=F ′/R′, where F =⊕pT0(Up),

F ′ = ⊕p′T0(Up′), and R and R′ consist of the relations spanned by vectors of the form (p,v)−

(q,g∗(v)) and (p′,v′)− (q′,g∗(v′)), respectively.

As X is diffeomorphic to Y , each plot p ∈ DX the diffeology of X corresponds to a plot

χ(p) ∈ DY the diffeology of Y with domain Up =Uχ(p), and conversely. Therefore, F = F ′. We

now show the basic relations in R correspond exactly with those of R′. Indeed, for p,q ∈ DX

forming a basic relation, and their corresponding plots p′ = χ(p),q′ = χ(q) ∈ DY , we have

(p,v)− (q,g∗v) ∈ R ⇐⇒ p = q◦g

⇐⇒ χ
−1 ◦ p′ = χ

−1 ◦q′ ◦g

⇐⇒ χ ◦χ
−1 ◦ p′ = χ ◦χ

−1 ◦q′ ◦g

⇐⇒ p′ = q′ ◦g

⇐⇒ (p′,v)− (q′,g∗v) ∈ R′

which tells us a difference of two elements forms a basic relation in R if and only if their corre-

sponding elements form a basic relation in R′; thus R ∼= R′. All equalities on the right hand side

are equalities of germs. Thus, F/R ∼= F ′/R′, yielding the desired result.

The following is an immediate consequence of the above Theorem IV.4, Theorem IV.3,

and the locality of the internal tangent space spelled out in Lemma II.23.

Corollary IV.5. Let M be a manifold acted upon by a proper Lie group G with notation as in

Theorem IV.3. Then the problem of determining the internal tangent space of such a quotient

reduces to the study of a suitable space quotiented by a compact, linear group action. In detail:

T[x0](M/G)∼= T[0](Tx0S/Gx0)

Remark. In light of Theorem IV.3 and Proposition III.9, we also have:
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T[x0](M/G)∼= T[0](B/Gx0)
∼= T[0](Tx0(G · x0)

⊥/Gx0)

We have not identified T[0](Tx0S/Gx0) with Tx0S/Gx0 , because Tx0S/Gx0 is not guaranteed

to be a manifold, unlike in prior cases where we have made the analogous identification. Consider

now the task as we have reduced it: that of determining T[0](Tx0S/Gx0). In general, we cannot

further simplify the problem, but reducing the general case to that of a compact, linear Lie group

action is significant.

Remark. For instance, in the case R/O(1) studied above, our slice for the action at 0 is simply R

and G0 = O(1), so our findings do not make our earlier work obsolete.

In general, there is “elbow grease” required to precisely determine the internal tangent

space to a point of the orbit space of a manifold acted upon by a proper Lie group action, but as

the below material helps to show, our findings proactively make the process more manageable and

help to link our work to the study of stratified spaces.

Example IV.6. We now work through an example where the results of this chapter are gainfully

used. We will determine the internal tangent space to an arbitrary point [x]∈R3/SO(3) (equipped

with the quotient diffeology), where SO(3) is the special orthogonal group of 3×3 matrices acting

on R3 by multiplication (i.e., rotation). Although this result is not novel, it exhibits the utility of

our work so far. We consider two cases.

When [x] = [0], we show T[0](R3/SO(3)) = {0}. As in the determination of T[0](R/O(1))

in Example II.19, it is sufficient to show (π,v) = 0 for all v ∈ T0(R3), as R3 is the domain of

π : R3 →R3/SO(3). Consider the three elements g1,g2,g3 ∈ SO(3) corresponding to the matrices

(−1 0 0
0 1 0
0 0 −1

)
,

(−1 0 0
0 −1 0
0 0 1

)
,

(
1 0 0
0 −1 0
0 0 −1

)
Then, for an arbitrary v ∈ T0(R3) we have the equivalences (π,v) ∼ (π,(gi)∗(v)), i ∈

{1,2,3} in the internal tangent space (viewed as F/R, as in Definition II.11). Thus, as the dif-
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ferentials (gi)∗ are just matrix multiplication by gi in this case, we can directly compute (in the

internal tangent space)

(π,4v) = (π,v)+(π,(g1)∗(v))+(π,(g2)∗(v))+(π,(g3)∗(v))

= (π,v)+(π,g1 · v)+(π,g2 · v)+(π,g3 · v)

= 0

hence (π,v) = 0 for any v ∈ T0(R3). This implies the desired result.

When [x] ̸= [0], we employ Theorem IV.5. We claim T[x](R3/SO(3)) = R. As a slice for

x ∈ M, we take an open interval on the unique line between 0 and x containing x but not 0. On this

slice, the tangent action of SO(3)x, the stabilizer of the action of SO(3) at x (which consists of all

rotations with axis of rotation passing through x), is trivial.

Indeed, since the tangent action of the differentials of elements of the action of SO(3)

on R3 can be identified with the action of the elements themselves in this instance, note that the

tangent action of SO(3)x is trivial because the action of SO(3)x as a subgroup of SO(3) must be

trivial on the slice S. Thus, by Corollary IV.5 and Example II.12

T[x](R3/SO(3)) = T[0](Tx(S)/SO(3)x) = T[0](R/SO(3)x) = R

as desired.



CHAPTER V

STRATIFIED SPACES

Loosely speaking, a stratified space is a space partitioned into “pieces,” each of which are

manifolds, joined in a certain way (details will be given below). As each point in the space lies in

a piece–a manifold–there is a well-understood notion of “stratified tangent space” to any point of

the stratified space. Indeed, the stratified tangent space to the point is just the tangent space to the

point viewed as sitting within the manifold that is the piece containing said point.

The quotient space of a manifold acted on by a proper Lie group action admits a well-

understood stratification, called the “orbit-type stratification,” meaning that in addition to viewing

these orbit spaces as diffeological spaces with the smooth structure given by a diffeology (in

particular the quotient diffeology arising from the standard diffeology on the manifold) one can

also view them as stratified spaces with a Sikorski smooth structure (see [24] and [29]), though

this notion of smooth structure goes beyond what we will discuss in this work.

It is our goal in this chapter to show that the internal tangent space to a point of the orbit

space of a manifold quotiented by a proper Lie group action (with the orbit space viewed as a

diffeological space) is isomorphic to the stratified tangent space to the point (with the orbit space

viewed as a stratified space with the orbit-type stratification). The fact that these two extensions

of the concept of tangent space to a point agree is of value because the orbit-type stratification for

an orbit space is well-understood and so certain results attained in that context can then be passed

on to the associated internal tangent space to a point.

The isomorphism between the internal tangent space to a point and the stratified tangent

space to a point also assists with the comparison of the internal tangent bundle described in [8]

and the stratified tangent bundle explained in, among other references, [24] and formed from the

stratified tangent spaces to each point. However, such a comparison goes beyond the scope of this

work.

40
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V.1. The Main Result

We now briefly introduce the requisite material on stratified spaces. One principal refer-

ence for this material is [24], but we will also draw our exposition from [12]. Recall that in a

topological space X a locally closed subset A ⊆ X is a subset for which every point of A has a

neighborhood U ⊆ X with A∩U closed in U .

Definition V.1. A stratified space is a topological space equipped with a stratification. Let X be

a topological space. A stratification of X is a locally finite partition S satisfying the following

two conditions:

• (Manifold Condition) Each piece of S , called a stratum, is a locally closed smooth

manifold.

• (Frontier Condition) If S1,S2 ∈ S are such that S1 ∩S2 ̸= /0, then S1 is in the topo-

logical boundary of S2.

The key points of note are, first, that a manifold M is automatically a stratified space with

a single stratum and, second, that a manifold M acted upon by a proper Lie group action of a Lie

group G admits another, non-trivial stratification called the “orbit-type stratification” (introduced

below). Before proceeding, we must introduce several other definitions. For background, see [12]

sections 2.6 & 2.7 and [24] chapter 4.

Throughout, M shall denote a manifold acted upon by a proper Lie group action of a Lie

group G.

Definition V.2 ([12] Definition 2.6.1). We say that x,y ∈ M are of the same orbit type, denoted

x ∼ y, if there exists a G-equivariant bijection from G · x to G · y.

Note that ∼ is an equivalence relation on M. The equivalence classes are called orbit

types in M, and are denoted

M∼
x := {y ∈ M | y ∼ x}
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Definition V.3 ([12] Definition 2.6.5, corrected by Jordan Watts). We say that x,y ∈ M are of the

same local type, denoted x ≈ y, if for any G-invariant open neighborhoods U and V of x and y,

respectively, after shrinking U and V if necessary, there exists a G-equivariant diffeomorphism

from U to V sending G · x onto G · y.

We will also denote the above in terms of the orbits, written as G · x ≈ G · y, and say that

G · x, G · y ∈ M/G

are of the same local type.

The relation x ≈ y is an equivalence relation, and each local action type is G-invariant and

contained within an orbit type. We call the equivalence classes local action types, denoted

M≈
x := {y ∈ M | y ≈ x}

Likewise there is an equivalence relation on M/G, denoted

M≈
G·x/G = {G · y ∈ M/G | G · y ≈ G · x}

We now have the following result, which shows that a manifold acted upon by a Lie group

via a proper Lie group action admits another, non-trivial stratification: the “orbit-type stratifica-

tion.” Recall the action by G is assumed to be proper.

Theorem V.4 ([12] Theorem 2.7.4 and [24] Theorem 4.3.7). There is a (Whitney) stratification

of M, called the orbit-type stratification, which consists of the connected components of the orbit

types in M.

Although the above theorem is phrased in terms of orbit types, local action types will be

of use to us below. Indeed, the significant fact about the orbit-type stratification is that it descends

to the quotient M/G, and there we will employ the local action type.

First, we note the following lemma. For H any closed subgroup of G, let
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M(H) := {x ∈ M | ∃g ∈ G s.t. gHg−1 = Gx}

That is, M(H) denotes the set of points x whose stabilizer Gx is conjugate to H. The

following is a consequence of Lemma 2.6.2(i) in [12].

Lemma V.5. The orbit type of a point x ∈ M is given by M(Gx), in the notation above.

Now we are ready to investigate the stratification of M/G resulting from the orbit-type

stratification of M. Indeed, as a consequence of [24] Corollary 4.3.11 the orbit-type stratification

descends from M to a stratification of M/G (also called the orbit-type stratification). Immediately

as a consequence of this corollary and the above lemma, or from [12] Theorem 2.6.7, we have

that the strata, each of which is a manifold, are of the form M≈
G·x/G. See [12] Theorem 2.6.7(iii)

for the proof that this space is indeed a manifold. Further, from [12] Theorem 2.6.7(v) we have

(recalling Definition III.6, Theorem III.8, and the subsequent discussion):

dim(M≈
G·x/G) = dim(TxM/Tx(G · x))Gx

Here, the notation (TxM/Tx(G ·x))Gx denotes the fixed point set of TxM/Tx(G ·x) under the

isotropy action of Gx. In general, for H a closed subgroup of G a Lie group acting properly on M,

the fixed point set of a manifold M with respect to H is

MH = {y ∈ M | h · y = y, ∀h ∈ H}

As a consequence of Theorem III.7 and Definition III.6, the above simplifies to

dim(M≈
G·x/G) = dim(TxS)Gx

where S is a slice through x in M, acted upon by the isotropy action of Gx (or it can be viewed as

the tangent action of Gx on the invariant subspace TxS of TxM). For a refresher, see the discussion

following Theorem III.8.
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It is not our purpose here to expound upon the nature of stratified spaces. Therefore, we

have opted for the abridged treatment given above. The intent is to obtain that (a) a manifold acted

upon by a proper Lie group action of a Lie group G has an “orbit-type stratification,” (b) that the

orbit-type stratification descends to a stratification of the orbit space M/G, and (c) the resulting

stratum containing a point [x] ∈ M/G is a manifold of dimension dim(TxS)Gx .

In particular, a point x of a stratified tangent space lies in precisely one of the manifold

strata, and so has a well-defined tangent space that can be associated to it, the stratified tangent

space to the point x, namely the tangent space of the point viewed as an element of the associated

manifold stratum.

For our work, because the fixed point set of a vector space under a linear Lie group action

(such as the tangent action of Gx) is itself a vector space, the stratified tangent space of a point

[x] ∈ M/G is isomorphic to the vector space (TxS)Gx . We now show that the stratified tangent

space to a point of M/G is isomorphic to the internal tangent space at that point.

Theorem V.6. Let M be a manifold acted upon by a proper Lie group action of a Lie group G,

with M/G the resulting orbit space. Then for [x] ∈ M/G we have

T[x](M/G)∼= (TxS)Gx

That is, the internal tangent space to [x] ∈ M/G viewed as a diffeological space with the

quotient diffeology is isomorphic to the stratified tangent space to [x]∈ M/G viewed as a stratified

space with induced orbit-type stratification.

To prove this theorem, in addition to employing Definition II.11, we also need to introduce

the Haar measure of a compact Lie group and the related averaging principle, which we now

discuss.

When a Lie group G acts via a proper Lie group action on a manifold M, the stabilizer

of the group Gx at any point x ∈ M is known to be compact. Therefore, Gx possesses a unique,

left-invariant Haar measure which maps f 7→
∫

Gx
f (g)dg : C(Gx)→ C, such that

∫
Gx

dg = 1 (this
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is discussed in [12] section 4.2; see also [13] section 11.1). Here, C(Gx) denotes the space of

continuous C-valued functions on Gx; such functions are automatically compactly supported.

The tangent action of Gx is a compact, linear group action on the invariant vector subspace

TxS of TxM. Therefore, we can as in [12] form the average map Π : TxS → TxS defined for v ∈ TxS

by

Π(v) =
∫

Gx

g · v dg =
∫

Gx

g∗(v) dg

where g ∈ Gx acts on v via the tangent action. In particular, g∗ is shorthand for g∗,x. As a linear

map between vector spaces, it will be useful to think of this transformation as a matrix acting on

Euclidean space.

Recall from the discussion between Theorem III.8 and Proposition III.9 that as an invariant

subspace of TxM we may regard TxS (and any invariant subspaces) as the Euclidean space Rk for

the appropriate k with the standard Euclidean inner product, on which Gx acts orthogonally. We

make this association going forward. We have the following proposition.

Proposition V.7 ([12] Proposition 4.2.1; Averaging Principle). The map Π is the orthogonal (with

respect to the standard Euclidean inner product) linear projection from TxS to (TxS)Gx , the space

of fixed points of the tangent action of Gx on TxS.

Remark. As described in [12] on pages 215− 216, the left-invariance of the measure and prop-

erties of the integral imply Π(g′ · v) = Π(v) for any g′ ∈ Gx.

We are now ready to begin the proof of Theorem V.6. Rather than overburden a single,

beleaguered LaTeX proof environment we will proceed via several lemmas.

The idea is as follows. From Corollary IV.5 we know that T[x0](M/G) ∼= T[0](TxS/Gx).

We now employ the first isomorphism theorem to construct an isomorphism from (TxS)Gx to

T[0](TxS/Gx). We begin by employing Definition II.11 which describes T[0](TxS/Gx) as F/R where

F =⊕pT0(Up) is the sum of tangent spaces at 0 in the domains of all pointed plots p :Up → TxS/Gx
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sending 0 to [0] in the quotient diffeology on TxS/Gx (which arises from the standard diffeology

on the manifold TxS) and R is generated by the basic relations (p,v)− (q,h∗(v)) where h repre-

sents a germ of smooth maps with p = q ◦ h as germs at 0 (we use h here rather than g for an

arbitrary germ of smooth maps to avoid confusion with Lie group elements). We then define the

map ϕ : TxS → F/R by:

ϕ(v) = (π,v) ∈ F/R

for v ∈ TxS. This map warrants explanation. The map π (here and below representing π : TxS →

TxS/Gx), the projection operator associated to the tangent action of Gx, is itself a plot in the quo-

tient diffeology on TxS/Gx (as π = π ◦ id, where the identity map id : TxS→ TxS lies in the standard

diffeology of TxS). Therefore, v ∈ TxS lies in the domain of a plot in the quotient diffeology and

so can be identified as an element of F in the summand T0(Uπ) = T0(TxS) = TxS. Therefore, with

ι as the inclusion map TxS ↪→ T0(TxS) = T0(Uπ) ⊂ F and π the projection F → F/R, we have

ϕ = π ◦ ι and the diagram

TxS �
� ι //

ϕ ""

F

π

��
F/R

Because π is a linear projection (F is a vector space and F/R its vector space quotient),

ϕ is clearly a homomorphism. We can also easily show ϕ is surjective. Indeed, for (p,v) any

element of F/R the fact that p is in the quotient diffeology means that locally about 0 in the

domain of p we have p = π ◦ p for p a smooth map in the standard diffeology on TxS. We have

Up
p //

p ##

TxS

π{{
TxS/Gx
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and hence in F/R we have (p,v)∼ (π, p∗(v)) (i.e., (p,v)− (π, p∗(v)) ∈ R). This implies that any

internal tangent vector (p,v)∈ F/R is equivalent to an element which takes a value of zero outside

the summand T0(TxS) corresponding to plot π . As ϕ maps TxS = T0(TxS) by inclusion onto this

summand term in F and then projects onto F/R, it is surjective.

We now turn to the kernel of our surjective homomorphism ϕ . First, we need to decompose

the domain TxS into two orthogonal subspaces. Recall that the fixed point set (TxS)Gx is a closed

subspace of TxS, due to the fact that the tangent action is continuous and linear. Therefore, we

can write TxS = (TxS)Gx ⊕ ((TxS)Gx)⊥ and we can decompose any element v ∈ TxS uniquely as

v = v f + vo for some v f ∈ (TxS)Gx and vo ∈ ((TxS)Gx)⊥.

Now, our primary goal is to show that the kernel of ϕ is the perpendicular space, ker(ϕ) =

((TxS)Gx)⊥. Then, by the first isomorphism theorem, our surjective homomorphism descends to

an isomorphism from (TxS)Gx to F/R. Combined with Corollary IV.5 and the fact that F/R is

T[0](TxS/Gx), the proof will then be complete. Our first substantial step toward this goal is the

following lemma.

Lemma V.8. The kernel of ϕ contains ((TxS)Gx)⊥. That is, ker(ϕ)⊇ ((TxS)Gx)⊥.

Proof. For this proof, let P denote ((TxS)Gx)⊥. Suppose we have an element vo ∈ P ⊆ TxS. We

aim to show that vo ∈ ker(ϕ) = ker(π ◦ ι). That is, we need to display ι(vo) = (π,vo) as a linear

combination of basic relations (p,v)− (q,h∗(v)) in R.

Indeed, because vo ∈ P, the average map Π described above and detailed in Proposition

V.7 maps vo to 0 in TxS, i.e., Π(vo) = 0. We can apply Π to the summand T0(Uπ) = T0(TxS) = TxS

and interpret the above as Π((π,vo)) = 0 in F (we will also employ this below); that is (recalling

that here and below g∗,x := g∗),

∫
Gx

g∗((π,vo)) dg = 0 (V.9)

We now show why the above equation allows us to write



THE STRUCTURE OF THE INTERNAL TANGENT SPACE 48

(π,vo) = ∑ci[(pi,vi)− (qi,hi
∗(vi))]

for ci ∈ R, pointed plots pi,qi, germs of smooth maps hi, and such that pi = qi ◦ hi as germs

(where each vi represents an arbitrary element of the tangent space T0(Upi)). Indeed, naively,

suppose we could obtain a linearly dependent set of vectors of the form {(π,gi
∗vo)}N

i=1 (that is,

∑
N
i=1 ci(π,gi

∗vo) = 0 for come constants ci not all zero), where each gi ∈ Gx. Then by taking

C := ∑ci we would have

C(π,vo) =C(π,vo)−
N

∑
i=1

ci(π,gi
∗vo)

and the argument would be complete upon dividing by C. However, there is a flaw in that we have

disregarded the possibility that C = 0, which must be remedied.

We therefore proceed more carefully, breaking the argument into two cases. First, consider

the situation when |Gx| is finite. In this case, the statement that Π((π,vo)) = 0 reduces to

(π,g1
∗vo)+ · · ·+(π,gN

∗ vo) = 0

for the finitely many gi ∈ Gx and where N = |Gx|. Thus in this case we can write

|Gx|(π,vo) = |Gx|(π,vo)−
|Gx|

∑
i=1

(π,gi
∗vo)

and because π = π ◦gi for all gi ∈ Gx (for π : TxS → TxS/Gx) along with the fact that 0 < |Gx|< ∞

this shows that (π,vo) lies in R and hence vo lies in ker(ϕ).

In the case where |Gx| is infinite, begin by letting {(π,gi
∗vo)}n

i=1 denote a maximal linearly

independent set in P taken from vectors of the form gi
∗vo with gi ∈ Gx. Because all such vectors

lie in the finite-dimensional vector space TxS, this is allowed. Then, for any g ∈ Gx, there are

constants ci and c (not all zero) such that
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n

∑
i=1

ci(π,gi
∗vo)+ c(π,g∗vo) = 0

which can be obtained by solving a linear system. We aim to solve the system with the added

constraint that (∑n
i=1 ci)+c= 1 (equivalently, (∑n

i=1 ci)+c ̸= 0). Consider the resulting augmented

system (wherein we use vector notation for clarity):


−−→
g1
∗vo · · ·

−−→
gn
∗vo

−−→g∗vo 0⃗

1 · · · 1 1 1


In this system, the

−−→
g1
∗vo, . . . ,

−−→
gn
∗vo constitute an m × n submatrix with m ≥ n and m =

dim(TxS). The vectors −−→g∗vo and 0⃗ are both m× 1. The bottom row of the matrix consists solely

of 1s. Overall, then, the system is (m+ 1)× (n+ 1), not counting the augmented column. We

proceed to reduce the system as follows.

1. First, perform elementary row operations to reduce the m×n submatrix containing
−−→
g1
∗vo, . . . ,

−−→
gn
∗vo to (

Idn×n
0(m−n)×n

)
where Id denotes the identity matrix (of dimension n) and below it lie m− n rows of 0s.

This can be done, as the vectors composing this submatrix are linearly independent. Note

that this can be done independent of the column containing −−→g∗vo (although this column is

potentially altered by the process) and without affecting the bottom row of 1s in the overall

matrix.

2. Second, eliminate all the 1s in the bottom row via subtraction, except the final 1 in

the column containing −−→g∗vo.

3. Now, the final (m+1)th entry of the column which originally contained −−→g∗vo takes

the form

1−α1(g∗vo)1 −·· ·−αm(g∗vo)m
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where (g∗vo)i denotes the ith entry of −−→g∗vo as an element of TxS and the αi’s are real con-

stants independent of −−→g∗vo (they depend only on the
−−→
gi
∗vo vectors and how they were row

reduced). In particular, we can vary g in −−→g∗vo without varying the αi’s.

4. If the entry referenced in the item above satisfies

1−α1(g∗vo)1 −·· ·−αm(g∗vo)m ̸= 0

then the overall augmented matrix can be solved, meaning that we have attained our de-

sired linear dependence relation with the additional constraint on the constants; namely,

that (∑n
i=1 ci)+ c = 1 ̸= 0. That there exists a g such that −−→g∗vo allows for this is justified

below.

Indeed, the condition that 1−α1(g∗vo)1−·· ·−αm(g∗vo)m ̸= 0 is equivalent to ⟨−→α ,−−→g∗vo⟩ ̸=

1, where ⟨·, ·⟩ denotes the Euclidean inner product on TxS. We show there exists such a g ∈ Gx by

contradiction. Suppose to the contrary that for all g ∈ Gx we have

⟨−→α ,−−→g∗vo⟩= 1

where here we are taking full advantage of the fact that −→α is independent of g in −−→g∗vo. In this case,

the fact that Π(vo) = 0 and the fact that integral and inner product can be interchanged together

imply

0 = ⟨−→α ,Π(vo)⟩=
∫

Gx

⟨−→α ,
−−−→
g∗(vo)⟩ dg =

∫
Gx

1 dg = 1

This is a contradiction. Therefore, there exists a g ∈ Gx such that


−−→
g1
∗vo · · ·

−−→
gn
∗vo

−−→g∗vo 0⃗

1 · · · 1 1 1


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can be solved. Let c1, . . . ,cn,c denote the entries of the solution vector. We have shown, with

C = (∑n
i=1 ci)+ c, that

C(π,vo) =C(π,vo)−
n

∑
i=1

ci(π,gi
∗vo)− (π,g∗vo)

and, because we have π = π ◦ gi = π ◦ g (for π : TxS → TxS/Gx and gi,g ∈ Gx) and the fact that

C ̸= 0, we have shown that (π,vo) ∈ R; hence vo ∈ ker(ϕ).

Thus, whether |Gx| is finite or infinite, we have shown that for any vo ∈ P it is the case that

ι(vo) = (π,vo) lies in R, hence vo ∈ ker(ϕ). This shows ker(ϕ)⊇ ((TxS)Gx)⊥, as desired.

Example V.10. We demonstrate solving the system in the above lemma in the case of R3/SO(3),

when seeking to determine T[0](R3/SO(3)). In this case the stabilizer of the point 0 satisfies

SO(3)0 = SO(3) and we can take all R3 as a slice through 0. Therefore, TxS =R3 and (TxS)SO(3) =

{0}, meaning that ((TxS)SO(3))⊥ = R3 as well. We consider vo = (1,1,1)T and the maximal (in

T0(R3) = R3) linearly independent set:

(−1
1
−1

)
,

(−1
−1
1

)
,

(
1
−1
−1

)
arising from vo via the elements g1,g2,g3 of SO(3) = SO(3)0 given as matrices by:

(−1 0 0
0 1 0
0 0 −1

)
,

(−1 0 0
0 −1 0
0 0 1

)
,

(
1 0 0
0 −1 0
0 0 −1

)
We now consider an arbitrary g∈ SO(3) and resulting vector g∗vo := (x,y,z)T , and proceed

to solve the system which arises as in Lemma V.8. Here, it takes the form



−1 −1 1 x 0

1 −1 −1 y 0

−1 1 −1 z 0

1 1 1 1 1


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After row-reducing to the identity submatrix (here there are no rows of zeros), we have



1 0 0 − x
2 −

z
2 0

0 1 0 − x
2 −

y
2 0

0 0 1 − y
2 −

z
2 0

1 1 1 1 1


whereupon after eliminating the 1s at the bottom of the first three columns we obtain



1 0 0 − x
2 −

z
2 0

0 1 0 − x
2 −

y
2 0

0 0 1 − y
2 −

z
2 0

0 0 0 1+ x+ y+ z 1


Here, the system is solvable, provided (as laid out in Lemma V.8):

1− (−1)x− (−1)y− (−1)z ̸= 0

where −→α = (−1,−1,−1)T is independent of g∗vo = (x,y,z)T . Indeed, in this instance we can take

g = id : R3 →R3, the identity map, so that g∗vo = vo and then 1+1+1+1 ̸= 0. Thus, the system

is indeed solvable (as proven indirectly in the lemma) in this case.

Returning to the proof of Theorem V.6, so far, we know the following (even before know-

ing the exact nature of the kernel and image).

dim(TxS)Gx +dim((TxS)Gx)⊥ = dimTxS = dim(ker(ϕ))+dim(im(ϕ))

Based on the above lemma, we can then infer

dim(TxS)Gx −dim(im(ϕ)) = dim(ker(ϕ))−dim((TxS)Gx)⊥ ≥ 0
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Hence, if we can show 0≥ dim(TxS)Gx −dim(im(ϕ)) then it follows that ker(ϕ)= ((TxS)Gx)⊥,

as desired. In light of that fact that any v ∈ TxS has a unique decomposition of the form v = v f +vo

for v f ∈ (TxS)Gx and vo ∈ ((TxS)Gx)⊥ and that ϕ is a homomorphism, the following lemma

achieves precisely this result.

Lemma V.11. The map ϕ : TxS → F/R restricted to (TxS)Gx is injective.

Before proving this result, we need another technical lemma. We reintroduce some con-

cepts before stating it. First, recall the average map Π introduced before and within Proposition

V.7. It will be necessary below to know the nature of its differential (at 0).

Secondly, recall that we are of conceiving the internal tangent space T[0](TxS/Gx) as F/R

where F =⊕pT0(Up) is the sum of tangent spaces at 0 in the domains of all pointed plots p : Up →

TxS/Gx sending 0 to [0] in the quotient diffeology on TxS/Gx (arising from the standard diffeology

on TxS) and R is generated by the basic relations (p,v)− (q,h∗(v)) where h represents a germ of

smooth maps with p = q◦h as germs at 0.

In particular, for any pointed plot p : Up → TxS/Gx we have (because the diffeology here

is the quotient diffeology) that p = π ◦ p as germs for π the projection from TxS to TxS/Gx and

p : Up → TxS a smooth map in the usual sense. In diagram form:

Up
p //

p ##

TxS

π{{
TxS/Gx

However, it is possible that p is not unique. That is, we could also have p = π ◦ p′ as germs

for p′ a smooth map distinct from p. Nonetheless, a statement related to the differentials at zero

can still be made.

Lemma V.12. Let Π be the average map introduced in and before Proposition V.7, with domain

TxS (equivalently, the summand of F corresponding to plot π : TxS → TxS/Gx).
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Also consider p : Up → TxS/Gx an arbitrary pointed plot in the quotient diffeology of

TxS/Gx and suppose that p = π ◦ p = π ◦ p′ as germs at 0, for p, p′ smooth maps Up → TxS.

Lastly suppose we have two pointed plots p,q such that p = π ◦ p, q = π ◦ q as germs at

0 for p,q appropriate smooth maps, and p = q◦h as germs at 0 for h the germ of a smooth map;

this means that (p,v)− (q,h∗v) ∈ R for v ∈ T0(Up).

Here and below, let ∗ be shorthand for ∗,0 the differential of a map at 0. We have the

following three facts:

1. The map Π is its own differential at 0. That is, Π = Π∗.

2. From p = π ◦ p = π ◦ p′, we have Π∗ ◦ p∗ = Π∗ ◦ p′∗.

3. From p = q◦h, we have Π∗ ◦ p∗ = Π∗ ◦q∗ ◦h∗

In effect, related plots have equal differentials after composing with Π. The second fact, basically

a well-definedness statement, ensures that the third is meaningful.

Proof. The first item is immediate. Indeed, because Π is a linear map on a finite dimensional

vector space TxS it can be identified with its differential Π∗.

For the second item, suppose we have p = π ◦ p = π ◦ p′ as germs about 0 as described.

Then for any point w in a neighborhood of 0 we have

p(w) = gw · p′(w)

for gw an element of Gx (which need not vary smoothly with w). Applying Π to both sides, we

have from the remark following Proposition V.7 that

Π(p(w)) = Π(gw · p′(w)) = Π(p′(w))

As this holds for all w in a neighborhood of zero, by the chain rule Π∗ ◦ p∗ = Π∗ ◦ p′∗.

For the third item, suppose we have p = π ◦ p, q = π ◦ q, and p = q ◦ h as germs about 0

as described. Then the last equality implies that in a neighborhood of 0 we have
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π ◦ p = π ◦q◦h

meaning that for any w in a neighborhood of 0 it is the case that

p(w) = gw ·q(h(w))

Again, gw ∈ Gx and can vary non-smoothly with w. We apply Π as done above and obtain

Π(p(w)) = Π(q(h(w))) for all w in a neighborhood of 0. Thus, we have by the chain rule that

Π∗ ◦ p∗ = Π∗ ◦q∗ ◦h∗.

We now return to the proof of Lemma V.11 pursuant to the proof of Theorem V.6.

Proof of Lemma V.11. We continue to think of the internal tangent space T[0](TxS/Gx) as the quo-

tient F/R. Suppose v f ∈ (TxS)Gx and v f ∈ ker(ϕ), meaning that π(ι(v f )) = 0 for ι : TxS → F the

inclusion map and π : F → F/R the projection map. This implies that ι(v f ) ∈ R, meaning it can

be written as a finite sum

ι(v f ) = (π,v f ) = ∑
i

ci[(pi,vi)− (qi,hi
∗vi)] (V.13)

where π : TxS → TxS/Gx, ci ∈ R, vi ∈ T0(Upi), the indexes pi,qi are pointed plots, and each hi is

an arbitrary germ of smooth maps such that pi = qi ◦hi as germs about 0. Our goal is to show that

v f = 0, for which it is sufficient to show that ι(v f ) = (π,v f ) = (π,0).

To do this, we begin with some observations drawn from equality V.13. First, note that

because v f ∈ (TxS)Gx we have Π(v f ) = v f , by Proposition V.7. Now, because equality V.13 holds

in the space F before modding out by R, we can assert two useful facts:

1. (First Observation) First, although the right-hand side of the equation contains el-

ements from possibly many plot indices of the direct sum F , because the left-hand side

contains only the index π , any terms on the right-hand side indexed by a plot other than π
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must cancel out completely with other elements on the right-hand side (indexed by the same

plot) or be zero.

2. (Second Observation) Second, because Π(v f ) = v f , any term indexed by π on the

right hand side, that is, a term of the form (π,vi) or (π,hi
∗vi), can be replaced by the term

(π,Π(vi)) or (π,Π(hi
∗vi)), respectively. This is because the left-hand side consists solely

of a term in the image of Π, so any terms or components on the right hand side not in this

image must cancel completely with other elements on the right hand side or be zero.

As shorthand, we will refer to the above two notions as the First and Second Observa-

tions (derived from equation V.13). Now, recall that for any pointed plot pi or qi in the quotient

diffeology we have pi = π ◦ pi or qi = π ◦qi for pi or qi a smooth map into TxS in the usual sense.

With this in mind, we expand the expression from equation V.13 to the below:

∑
i

ci[(pi,vi)− (qi,hi
∗vi)]

= ∑
i

ci[(pi,vi)− (π, pi∗vi)+(π, pi∗vi)− (π,qi∗hi
∗vi)+(π,qi∗hi

∗vi)− (qi,hi
∗vi)]

Now, rewrite the expanded expression as

∑
i

ci[(π, pi∗vi)− (π,qi∗hi
∗vi)]+∑

i
ci[(pi,vi)− (π, pi∗vi)+(π,qi∗hi

∗vi)− (qi,hi
∗vi)] (V.14)

From here, group related pairs in the second sum above not by index, but rather by plot.

That is, whenever pi agrees with some other p j or qk (and likewise for plots qi), group all such

pairs (pi,vi)− (π, pi∗vi) or (π,qi∗hi
∗vi)− (qi,hi

∗vi) together. With this organization, where we

label groups of the same plot using only p’s (no longer q’s), expression V.14 becomes:

(π,v f ) = ∑
i

ci[(π, pi∗vi)− (π,qi∗hi
∗vi)]
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+
m1

∑
j=1

c1
j [(p1,v1

j)− (π, p1∗v1
j)]+

n1

∑
k=1

c1
k [(π, p1∗(h1,k)∗v1

k)− (p1,(h1,k)∗v1
k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π, pN∗vN
j )]+

nN

∑
k=1

cN
k [(π, pN∗(hN,k)∗vN

k )− (pN ,(hN,k)∗vN
k )]

where it is possible that mi or ni may be zero. We now proceed to show the above collection of

sums equals zero. First, note that because Π(v f ) = v f , by our Second Observation 2 from the

beginning of the proof all terms in our grouped expression indexed by the plot π must lie in the

image of Π. Therefore, we may replace the above with:

(π,v f )

= (π,Π(v f ))

= ∑
i

ci[(π,Π(pi∗vi))− (π,Π(qi∗hi
∗vi))]

+
m1

∑
j=1

c1
j [(p1,v1

j)− (π,Π(p1∗v1
j))]+

n1

∑
k=1

c1
k [(π,Π(p1∗(h1,k)∗v1

k))− (p1,(h1,k)∗v1
k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π,Π(pN∗vN
j ))]+

nN

∑
k=1

cN
k [(π,Π(pN∗(hN,k)∗vN

k ))− (pN ,(hN,k)∗vN
k )]

Observe that the first and third parts of Lemma V.12 imply

∑
i

ci[(π,Π(pi∗vi))− (π,Π(qi∗hi
∗vi))] = ∑ci[(π,Π∗pi∗vi)− (π,Π∗pi∗vi)] = 0

and so this entire sum (the first part of our extended expression) can be eliminated from the

expression for (π,v f ). This leaves us with

(π,v f )
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= (π,Π(v f ))

=
m1

∑
j=1

c1
j [(p1,v1

j)− (π,Π(p1∗v1
j))]+

n1

∑
k=1

c1
k [(π,Π(p1∗(h1,k)∗v1

k))− (p1,(h1,k)∗v1
k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π,Π(pN∗vN
j ))]+

nN

∑
k=1

cN
k [(π,Π(pN∗(hN,k)∗vN

k ))− (pN ,(hN,k)∗vN
k )]

Now, observe that if pℓ = π for one of our N remaining groupings, the grouping takes the

form:

mℓ

∑
j=1

cℓj[(π,Π(vℓj))− (π,Π(pℓ∗vℓj))]+
nℓ

∑
k=1

cℓk[(π,Π(pℓ∗(hℓ,k)∗vℓk))− (π,Π((hℓ,k)∗vℓk))] (V.15)

where π = pℓ = π ◦ pℓ. However, this can be further simplified in light of Lemma V.12. Indeed,

because we also have pℓ = π = π ◦ id, where id : TxS → TxS denotes the identity map, it follows

from the first and second parts of the lemma that Πpℓ∗ = Π∗pℓ∗ = Π∗id∗ = Π∗. Therefore, since

Lemma V.12 also gives that Π = Π∗, expression V.15 becomes

mℓ

∑
j=1

cℓj[(π,Π∗vℓj)− (π,Π∗vℓj)]+
nℓ

∑
k=1

cℓk[(π,Π∗(hℓ,k)∗vℓk)− (π,Π∗(hℓ,k)∗vℓk)] = 0

Therefore, such a grouping can be eliminated. We have so far shown that for any v f ∈

(TxSGx), (π,v f ) can be expressed as

(π,v f )

= (π,Π(v f ))

=
m1

∑
j=1

c1
j [(p1,v1

j)− (π,Π(p1∗v1
j))]+

n1

∑
k=1

c1
k [(π,Π(p1∗(h1,k)∗v1

k))− (p1,(h1,k)∗v1
k)]

...
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+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π,Π(pN∗vN
j ))]+

nN

∑
k=1

cN
k [(π,Π(pN∗(hN,k)∗vN

k ))− (pN ,(hN,k)∗vN
k )]

where pℓ ̸= π . We now show that these remaining terms can also be eliminated. Indeed, for such

a grouping associated to a plot pℓ, namely

mℓ

∑
j=1

cℓj[(pℓ,vℓj)− (π,Π(pℓ∗vℓj))]+
nℓ

∑
k=1

cℓk[(π,Π(pℓ∗(hℓ,k)∗vℓk))− (pℓ,(hℓ,k)∗vℓk)]

=

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(h
ℓ,k)∗vℓk

)
+

(
π,−

mℓ

∑
j=1

cℓjΠ(pℓ∗vℓj)+
nℓ

∑
k=1

cℓkΠ(pℓ∗(hℓ,k)∗vℓk)

)

we must have that the first term in the second line above satisfies

mℓ

∑
j=1

cℓj(pℓ,vℓj)−
nℓ

∑
k=1

cℓk(pℓ,(hℓ,k)∗vℓk) =

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(h
ℓ,k)∗vℓk

)
= 0 (V.16)

because pℓ ̸= π and, as noted in our First Observation 1 at the start of this proof, such terms must

cancel completely (and only with other terms indexed by the same plot pℓ). Now, as all vℓj and

(hℓ,k)∗vℓk lie in T0(Upℓ) for all j,k, we can apply the differential Π∗pℓ∗ to this collection of vectors

to observe that

0 =−1 ·Π∗pℓ∗

[
mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(h
ℓ,k)∗vℓk

]
(V.17)

=−
mℓ

∑
j=1

cℓjΠ∗pℓ∗vℓj +
nℓ

∑
k=1

cℓkΠ∗pℓ∗(hℓ,k)∗vℓk (V.18)

From the above equations V.16 and V.18, along with the first part of Lemma V.12, it

follows that

mℓ

∑
j=1

cℓj[(pℓ,vℓj)− (π,Π(pℓ∗vℓj))]+
nℓ

∑
k=1

cℓk[(π,Π(pℓ∗(hℓ,k)∗vℓk))− (pℓ,(hℓ,k)∗vℓk)]
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=

(
pℓ,

mℓ

∑
j=1

cℓjv
ℓ
j −

nℓ

∑
k=1

cℓk(h
ℓ,k)∗vℓk

)
+

(
π,−

mℓ

∑
j=1

cℓjΠ(pℓ∗vℓj)+
nℓ

∑
k=1

cℓkΠ(pℓ∗(hℓ,k)∗vℓk)

)

= 0

as desired. Hence each remaining term in the expression for (π,v f ) can be eliminated. This means

that overall

(π,v f )

= (π,Π(v f ))

=
m1

∑
j=1

c1
j [(p1,v1

j)− (π,Π(p1∗v1
j))]+

n1

∑
k=1

c1
k [(π,Π(p1∗(h1,k)∗v1

k))− (p1,(h1,k)∗v1
k)]

...

+
mN

∑
j=1

cN
j [(pN ,vN

j )− (π,Π(pN∗vN
j ))]+

nN

∑
k=1

cN
k [(π,Π(pN∗(hN,k)∗vN

k ))− (pN ,(hN,k)∗vN
k )]

= 0

We have shown that for any v f ∈ (TxS)Gx also in ker(ϕ) = ker(ι ◦π), it is the case that

ι(v f ) = (π,v f ) = ∑
i

ci[(pi,vi)− (qi,hi
∗vi)] = 0

in F . This implies that v f = 0. Thus, the map ϕ is injective when restricted to (TxS)Gx .

As described above, collectively Lemmas V.8 and V.11 show that ker(ϕ) = ((TxS)Gx)⊥.

Indeed, combined they show:

0 ≥ dim(TxS)Gx −dim(im(ϕ)) = dim(ker(ϕ))−dim((TxS)Gx)⊥ ≥ 0

with the first inequality coming from Lemma V.11 and the second inequality from Lemma V.8.
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Therefore, by the first isomorphism theorem (TxS)Gx ∼=F/R, where F/R represents T[0](TxS/Gx).

Combined with Theorem IV.5, Theorem V.6 is attained. That is, the internal tangent space to a

point [x] ∈ M/G (thought of as a diffeological space with the quotient diffeology) is isomorphic

to the stratified tangent space to [x] ∈ M/G (thought of as a stratified space with the orbit-type

stratification).

This theorem is the culminating result of this work. It provides a link between the internal

tangent spaces studied here and in [8] and [14] to the well understood stratified tangent space of

an orbit space.

V.2. Examples of Stratified Tangent Spaces

In light of Theorem V.6, we now determine the stratified tangent spaces to points of the

orbit spaces studied above: R/O(1) and R3/SO(3). As expected in light of the above result, these

stratified tangent spaces are isomorphic to the internal tangent spaces found already.

Example V.19. Let R/O(1) be the orbit space of R under the action of O(1) by scaling by ±1, as

described when this space was initially introduced in Example II.19

At the point [0] ∈ R/O(1), the slice for the action in R is the entire space R and the

stabilizer O(1)0 = O(1) fixes only 0 in the slice (here, the tangent action is simply the action itself

restricted to elements in the stabilizer). Therefore the stratified tangent space to [0] is a vector

space of dimension dim(TxS)O(1)0 = dim({0}) = 0. Thus, it is isomorphic to {0}.

For a point [x] ̸= [0] in R/O(1), the slice for the action can be taken to be any open interval

containing the point x but not 0. As the stabilizer O(1)x consists only of the identity element,

it fixes every point in the slice. Therefore the stratified tangent space to [x] is a vector space of

dimension dim(TxS)O(1)x = dim(TxS) = 1. Thus, it is isomorphic to R.

Example V.20. Let R3/SO(3) be the orbit space of R3 under the action of SO(3) by rotation, as

described when this space was initially introduced in Example IV.6
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At the point [0] ∈ R3/SO(3), the slice for the action in R3 is the entire space R3 and

the stabilizer SO(3)0 = SO(3) fixes only 0 in the slice (again, the tangent action is the simply

the action itself restricted to elements in the stabilizer, as the action is by matrices). Therefore

the stratified tangent space to [0] is a vector space of dimension dim(TxS)SO(3)0 = dim({0}) = 0.

Thus, it is isomorphic to {0}.

For a point [x] ̸= [0] in R3/SO(3), the slice for the action can be taken to be any open

interval on the unique line through both x and 0 in R3 containing the point x but not 0. As the

stabilizer SO(3)x consists only of the rotations with axis of rotation passing through x, and such

rotations fix every point in the slice, we have (TxS)SO(3)x = TxS. Therefore the stratified tangent

space to [x] is a vector space of dimension dim(TxS)SO(3)x = dim(TxS) = 1. Thus, it is isomorphic

to R.

Note that the stratified tangent spaces in both these examples were determined quickly

from the slices and the tangent action at each point. This demonstrates the utility of linking the

internal tangent space to a point to the stratified tangent space to said point.
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